给定椭圆C: (a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).(1)求实数a,b的值;(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
求证:。
已知复数。当取什么值时,复数是 (1)0 (2)虚数; (3)纯虚数; (4)复平面内第二、四象限角平分线上的点对应的复数。
不等式选讲。若函数的最小值为2,求自变量的取值范围
坐标系与参数方程以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位, 圆的方程为,圆的参数方程为(为参数),求两圆的公共弦的长度。
几何证明选讲 如图,已知、是圆的两条弦,且是线段的垂直平分线,已知,求线段的长度.