下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出关于的线性回归方程;(3)已知该厂技术改造前吨甲产品能耗为吨标准煤;试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
已知动圆过定点,且与直线相切.(1)求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.
已知向量,,函数,.(1)求函数的最小正周期;(2)在中,分别是角的对边,且,,,且,求的值.
已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.(1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围;(3)若a>0,f(x)为偶函数,实数m,n满足mn<0,m+n>0,定义函数,试判断F(m)+F(n)值的正负,并说明理由.
有时可用函数f(x)=描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(x∈N*),f(x)表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x≥7时,掌握程度的增加量f(x+1)-f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121),(121,127),(127,133).当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.