如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是直线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒. (1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积说明原因。 (2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状。
定义为函数的 “特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}. (1)将“特征数”是的函数图象向上平移2个单位,得到一个新函数,这个函数的解析式是; (2)在(1)中,平移前后的两个函数分别与y轴交于O、A两点,与直线分别交于C、B两点,判断以A、B、C、O四点为顶点的四边形形状,并说明理由。 (3)若(2)中的四边形(不包括边界)始终覆盖着“特征数”是的函数图象的一部分,求满足条件的实数b的取值范围?
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t. (1)求tan∠FOB的值; (2)用含t的代数式表示△OAB的面积S;
、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图. (1)求关于的表达式; (2)已知乙车以60千米/时的速度匀速行驶,设行驶过 程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式; (3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.并在图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米. (1)求钢缆CD的长度;(精确到0.1米) (2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84,sin400=0.64,cos400=)