已知函数有最小值.(1)求实数的取值范围;(2)设为定义在上的奇函数,且时,,求的解析式.
已知中心在原点,焦点在x轴上的椭圆C的离心率为 ,且经过点M. (1)求椭圆C的方程; (2)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足·=2?若存在,求出直线l1的方程;若不存在,请说明理由.
从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件, 每次取出后不放回,连续取两次. (1)求取出的两件产品中恰有一件次品的概率; (2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足 (1)若a=1,且p∧q为真,求实数x的取值范围; (2)若p是q的必要不充分条件,求实数a的取值范围.
一个袋中有红、白两种球各若干个,现从中一次性摸出两个球,假设摸出的两个球至少有一个红球的概率为,至少一个白球的概率为,求摸出的两个球恰好红球白球各一个的概率.
已知抛物线上点到焦点的距离为4. (1)求,值; (2)设,是抛物线上分别位于轴两侧的两个动点,且(其中为坐标原点).求证:直线过定点,并求出该定点的坐标.