(满分12分)已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调增区间.
对任意都有(Ⅰ)求和的值;(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;(Ⅲ)令试比较与的大小.
在三棱柱ABC-A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D为中点,(Ⅰ)求证:平面;(Ⅱ)求与平面所成角的正弦值.
在中,角A、B、C所对的边分别为、、.已知向量,,且.(Ⅰ) 求角的大小; (Ⅱ) 若,求边的最小值.
(本题满分16分)已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,直线的斜率为,有成立?若存在,请求出的值;若不存在,请说明理由.
.(本题满分14分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.(Ⅰ) 求椭圆的标准方程; (Ⅱ) 设过点的直线交椭圆于、两点,若,求直线的斜率的取值范围.