(.重庆市A卷,第26题,12分)如图1,在平面直角坐标系中,抛物线交
轴于A,B两点(点A在点B的左侧),交
轴于点W,顶点为C,抛物线的对称轴与
轴的交点为D。
图1
(1)求直线BC的解析式;
(2)点E(m,0),F(m+2,0)为轴上两点,其中
,
,
分别垂直于
轴,交抛物线与点
,
,交BC于点M,N,当
的值最大时,在
轴上找一点R,使
的值最大,请求出R点的坐标及
的最大值;
(3)如图2,已知轴上一点
,现以P为顶点,
为边长在
轴上方作等边三角形QPG,使GP⊥
轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的△QPG为
,设
与△ADC的重叠部分面积为s,当点
到
轴的距离与点
到直线AW的距离相等时,求s的值。
|