椭圆C:的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l. (1)求椭圆C的方程; (2)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围. (3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1、PF2的斜率分别为k1、k2,若k≠0,试证明 为定值,并求出这个定值.
现有编号分别为1,2,3,4,5的五个不同的语文题和编号分别为6,7,8,9,的四个不同的数学题。甲同学从这九个题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且”(1)共有多少个基本事件?并列举出来;(2)求甲同学所抽取的两题的编号之和小于17但不小于11的概率.
在中,分别是角A、B、C的对边, ,且.(1)求角A的大小;(2)求的值域.
已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.
直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程.
已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.