如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域内建两个圆形花坛,该扇形的圆心角为变量,其中半径较大的花坛内切于扇形,半径较小的花坛与外切,且与、相切. (1)求半径较大的花坛的半径(用表示); (2)求半径较小的花坛的半径的最大值.
.选修4-1:几何证明选讲: 如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,. (Ⅰ)求证:AC是△BDE的外接圆的切线; (Ⅱ)若,求EC的长.
已知函数,其中为实数. (1)当时,求曲线在点处的切线方程; (2)是否存在实数,使得对任意,恒成立?若不存在,请说明理由,若存在,求出的值并加以证明.
如图,线段过y轴上一点,所在直线的斜率为,两端点、到y轴的距离之差为. (Ⅰ)求出以y轴为对称轴,过、、三点的抛物线方程; (Ⅱ)过抛物线的焦点作动弦,过、两点分别作抛物线的切线,设其交点为,求点的轨迹方程,并求出的值.
如图,已知棱柱的底面是菱形,且面,,,为棱的中点,为线段的中点, (Ⅰ)求证: 面; (Ⅱ)判断直线与平面的位置关系,并证明你的结论; (Ⅲ)求三棱锥的体积.
某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图: (Ⅰ)依茎叶图判断哪个班的平均分高? (Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率; (Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?” 下面临界值表仅供参考:
(参考公式:其中)