(本小题满分10分)选修4-5:不等式选讲已知函数(1)解不等式; (2)对任意,都有成立,求实数的取值范围.
设{an}是公比为正数的等比数列,a1=2,a3=a2+4,(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3.(1)求an;(2)求数列{nan}的前n项和Tn.
已知函数f(x)=ax--3ln x,其中a为常数.(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
设定义在(0,+∞)上的函数f(x)=ax++b(a>0).(1)求f(x)的最小值;(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
已知函数f(x)=m(x-1)2-2x+3+ln x,m≥1.(1)当m=时,求函数f(x)在区间[1,3]上的极小值;(2)求证:函数f(x)存在单调递减区间[a,b];(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.