某地最近十年粮食需求量逐年上升,下表是部分统计数据:
(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程; (Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量.
己知数列的前n项和为,,当n≥2时,,,成等差数列. (1)求数列的通项公式; (2)设,是数列的前n项和,求使得对所有都成立的最小正整数.
已知的角所对的边,且. (1)求角的大小; (2)若,求的最大值并判断这时三角形的形状.
已知直线经过点. (1)若直线平行于直线,求直线的方程; (2)若点和点到直线的距离相等,求直线的方程.
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是. (Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关? (Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
下面的临界值表供参考: (参考公式:K2=,其中n="a+b+c+d)"
为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
若用表中数据所得频率代替概率.现从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验. (Ⅰ)求这两种金额之和不低于20元的概率; (Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.