如图,为测量一段两岸互相平行的护城河的宽度CD,在河岸边选取A点与B点,测得∠CAB=45°,∠CBA=60°,AB=24米,求这段护城河的宽度CD.(,结果精确到1m.)
如图,一次函数 y = kx + b ( k , b 为常数, k ≠ 0 ) 的图象与反比例函数 y = − 12 x 的图象交于 A 、 B 两点,且与 x 轴交于点 C ,与 y 轴交于点 D , A 点的横坐标与 B 点的纵坐标都是3.
(1)求一次函数的表达式;
(2)求 ΔAOB 的面积;
(3)写出不等式 kx + b > − 12 x 的解集.
如图, A 、 B 两个小岛相距 10 km ,一架直升飞机由 B 岛飞往 A 岛,其飞行高度一直保持在海平面以上的 hkm ,当直升机飞到 P 处时,由 P 处测得 B 岛和 A 岛的俯角分别是 45 ° 和 60 ° ,已知 A 、 B 、 P 和海平面上一点 M 都在同一个平面上,且 M 位于 P 的正下方,求 h (结果取整数, 3 ≈ 1 . 732 )
某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2) ) :
(1)请你求出该班的总人数,并补全条形图(注 : 在所补小矩形上方标出人数);
(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?
如图, AB = AC , AB ⊥ AC , AD ⊥ AE ,且 ∠ ABD = ∠ ACE .
求证: BD = CE .
已知抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( − 3 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接 OP 交 BC 于点 D ,当 S ΔCPD : S ΔBPD = 1 : 2 时,请求出点 D 的坐标;
(3)如图2,点 E 的坐标为 ( 0 , − 1 ) ,点 G 为 x 轴负半轴上的一点, ∠ OGE = 15 ° ,连接 PE ,若 ∠ PEG = 2 ∠ OGE ,请求出点 P 的坐标;
(4)如图3,是否存在点 P ,使四边形 BOCP 的面积为8?若存在,请求出点 P 的坐标;若不存在,请说明理由.