如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长(小于AC的长)为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.(1)求证:点D在AB的中垂线;(2)如果△ACD的面积为1,求△ADB的面积.
如图,在平面直角坐标系中,直线分别交轴、轴于两点.点、,以为一边在轴上方作矩形,且.设矩形CDEF与ABO重叠部分的面积为S. (1)求点、的坐标;(2)当b值由小到大变化时,求s与b的函数关系式;(3)若在直线上存在点,使等于,请直接写出的取值范围.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项 支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,在4×4的正方形方格中,△ABC的顶点都在边长为1的小正方形的顶点上.请你在图中画出一个与△ABC相似的△DEF,使得△DEF的顶点都在边长为1的小正方形的顶点上,且△ABC与△DEF的相似比为1∶2.
已知:关于x的方程 有两个不相等的实数根(其中k为实数). (1)求k的取值范围;(2)若k为非负整数,求此时方程的根.
如图,已知等边三角形ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F.(1)判断EF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长.(结果保留根号)