已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
已知函数.(Ⅰ)求;(Ⅱ)求函数图象上的点处的切线方程.
已知函数,,,其中且.(I)求函数的导函数的最小值;(II)当时,求函数的单调区间及极值;(III)若对任意的,函数满足,求实数的取值范围.
当时,,(I)求;(II)猜想与的关系,并用数学归纳法证明.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值。