已知点为抛物线的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆. (Ⅰ)证明:是△外接圆的直径; (Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.
已知函数。 (Ⅰ)若,求函数的单调区间并比较与的大小关系 (Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围; (Ⅲ)求证:。
已知等差数列的首项,公差.且分别是等比数列的. (Ⅰ)求数列与的通项公式; (Ⅱ)设数列对任意自然数均有…成立,求…的值.
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,. (Ⅰ)若点是的中点,求证:平面; (II)试问点在线段上什么位置时,二面角的余弦值为.
已知函数为偶函数,周期为2. (Ⅰ)求的解析式; (Ⅱ)若的值.