(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3.(1)求这个等腰梯形的外接圆E的方程;(2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.
(理科)如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.(Ⅰ)求的值;(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.
(理科)椭圆的中心为坐标原点,右焦点为,且椭圆过点。的三个顶点都在椭圆上,设三条边的中点分别为.(1)求椭圆的方程;(2)设的三条边所在直线的斜率分别为,且。若直线的斜率之和为0,求证:为定值.
(理科)已知椭圆经过点,离心率为.过点的直线与椭圆交于不同的两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)设直线和直线的斜率分别为和,求证:为定值.
(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
(理科)已知椭圆的两个焦点分别为,.点与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆的方程;(Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,若,试求满足的关系式.