(本小题满分12分)已知函数.(Ⅰ)若函数在上为单调增函数,求a的取值范围;(Ⅱ)设,且,求证:.
如图,正方体ABCD—A1B1C1D1的棱长为1,PQ分别是线段AD1和BD上的点,且D1P∶PA=DQ∶QB=5∶12.求证PQ∥平面CDD1C1;求证PQ⊥AD;.
设是一个离散型随机变量,其分布列如下表,求值,并求.
分析:根据分布列的两个性质,先确定q的值,当分布列确定时,只须按定义代公式即可.
一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.
某批数量较大的商品的次品率是5%,从中任意地连续取出10件,为所含次品的个数,求.分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数服从二项分布,由公式可得解.
有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.分析:求时,由题知前次没打开,恰第k次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般