已知函数,. (Ⅰ)若,且存在单调递减区间,求的取值范围; (Ⅱ)设函数的图象与函数的图象交于点、,过线段 的中点作轴的垂线分别交、于点、,是否存在点,使在点处的切线与在点处的切线平行?如果存在,求出点的横坐标,如果不存在,说明理由.
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.(1)求双曲线C的方程;(2)若,求实数k值.
如图,四面体ABCD中,O、E分别是BD、BC的中点(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。
设函数(1)设的内角,且为钝角,求的最小值;(2)设是锐角的内角,且求的三个内角的大小和AC边的长。
一个多面体的直观图和三视图如下:(其中分别是中点)(1)求证:平面;(2)求多面体的体积.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.(1)设N为EF上一点,当时,有DN ∥平面AEM,求 的值;(2)试探究点M的位置,使平面AME⊥平面AEF。