(本小题满分12分)平面平面,为正方形,是直角三角形,且,分别是线段的中点(1)求证://平面;(2)在线段上是否存在一点,使得点到平面的距离为,若存在,求出的值;若不存在,请说明理由.
(本题满分12分) 已知直线经过直线与直线的交点,且垂直于直线. (Ⅰ)求直线的方程; (Ⅱ)求直线与两坐标轴围成的三角形的面积.
(本小题满分14分) 设数列的首项R),且, (Ⅰ)若; (Ⅱ)若,证明:; (Ⅲ)若,求所有的正整数,使得对于任意,均有成立.
(本小题满分14分) 已知函数处取得极值. (Ⅰ)求的值; (Ⅱ)若当恒成立,求的取值范围; (Ⅲ)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
(本小题满分13分) 已知各项都不相等的等差数列的前六项和为60,且的等比中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列的前项和
(本小题满分13分) 如图,正三棱柱中,D是BC的中点, (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.