(本小题满分10分)已知≤≤1,若函数 在区间[1,3]上的最大值为,最小值为,令. (1)求的函数表达式; (2)写出函数单调增区间与单调减区间(不必证明),并求出的最小值
(本小题满分13分)已知函数, x∈R的部分图象如图所示.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ) 设点B是图象上的最高点,点A是图象与x轴的交点,求的值.
(本小题满分14分)已知动圆过定点,且在轴上截得弦长为.设该动圆圆心的轨迹为曲线.(1)求曲线方程;(2)点为直线:上任意一点,过作曲线的切线,切点分别为、,面积的最小值及此时点的坐标.
(本小题满分15分)在直三棱柱中,底面是边长为2的正三角形,是棱的中点,且.(1)试在棱上确定一点,使平面;(2)当点在棱中点时,求直线与平面所成角的大小的正弦值。
(本小题满分15分)已知数列的前项和满足:(为常数,且).(1)设,若数列为等比数列,求的值;(2)在满足条件(1)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.
(本小题满分14分)在中,角所对的边分别为,角为锐角,且(1)求的值;(2)若,求的最大值。