某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?
已知,求代数式的值.
如图, 已知:BF=DE,∠1=2,∠3=∠4 求证:AE=CF. 证明:
因式分解:
已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD. 探究下列问题: (1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=; (2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=; (3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数. 图1图2图3
已知:如图,在□ EFGH中,点F的坐标是(-2,-1),∠EFG=45°. (1)求点H的坐标; (2)抛物线经过点E、G、H,现将向左平移使之经过点F,得到抛物线,求抛物线的解析式; (3)若抛物线与y轴交于点A,点P在抛物线的对称轴上运动.请问:是否存在以AG为腰的等腰三角形AGP?若存在,求出点P的坐标;若不存在,请说明理由.