如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
如图,∠BAD=∠CAE=90o,AB=AD,AE=AC,AF⊥CF,垂足为F. (1)若AC=10,求四边形ABCD的面积; (2)求证:AC平分∠ECF; (3)求证:CE="2AF" .
如图,在△ABC中,∠BCA=90º,CA=CB,AD为BC边上的中线,CG⊥AD于G,交AB于F,过点B作BC的垂线交CG于E.求证:∠ADC=∠BDF.
一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求原计划的行驶速度.
如图,已知BD为△ABC的中线,CE⊥BD于E,AF⊥BD于F.求证:BE+BF2BD
已知关于x的方程的解是正数,求m的取值范围.