(本小题满分10分)某同学对本地[30,55]岁的爱好阅读的人群随机抽取n人进行了一次调查,得到如下年龄统计表,其中不超过40岁的共有60人.(Ⅰ)求出n,a的值;(Ⅱ)从[45,55)岁年龄段爱好阅读的人中采用分层抽样法抽取6人,然后从这6人之中选2人为社区阅读大使,求选出的两人年龄均在[45,50)内的概率.
(本小题满分12分)已知,.(1)若,求的值;(2)若,求的单调递增区间.
(本小题满分14分)如图,已知椭圆的离心率为 ,F1、F2为其左、右焦点,过F1的直线交椭圆于A、B两点,△F1AF2的周长为.(1)求椭圆的标准方程;(2)求△AOB面积的最大值(O为坐标原点);
(本小题满分13分)在平面直角坐标系中,已知点,点B在直线:上运动,过点B与垂直的直线和线段AB的垂直平分线相交于点M.(1)求动点M的轨迹E的方程;(2)过(1)中轨迹E上的点作轨迹E的切线,求切线方程.
(本小题满分12分)已知等差数列的首项,前n项和为Sn,且成等差数列.(1)求数列的通项公式;(2)若数列{bn}为递增的等比数列,且集合,设数列的前n项和为,求.
(本小题满分12分)在数列{an}中,a1=2,=4an-3n+1,.(1)令,求证数列{bn}为等比数列;(2)求数列{an}的前n项和Sn.