如图,直径为10的⊙O经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+48=0的两根。(1)求线段OA、OB的长;(2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD·CB时,求C点的坐标;(3)在⊙O上是否存在点P,使S△POD=S△ABD.若存在,求出点P的坐标;若不存在,请说明理由.
已知:AB=CD,AE⊥BC于E,DF⊥BC于F,且CE=BF 。 求证:AB∥CD
某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);若∠BAC=56º,则∠BPC= º.
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;在DE上画出点P,使最小在DE上画出点Q,使最小
半径为5的⊙O中,直径AB的不同侧有定点C和动点P. 已知BC∶CA=4∶3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q. 求证:△ABC∽△PQC; 当点P与点C关于AB对称时,求CQ的长; 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长;当点P运动到弧AB的中点时,求CQ的长.