如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点 (不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD. (1)弦长AB等于 (结果保留根号); (2)当∠D=20°时,求∠BOD的度数; (3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似?请写出解答过程.
我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为 A、 B、 C、 D、 E、五个组, x表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.
A组:90≤ x≤100 B组:80≤ x<90 C组:70≤ x<80 D组:60≤ x<70 E组: x<60
(1)参加调查测试的学生共有 人;请将两幅统计图补充完整.
(2)本次调查测试成绩的中位数落在 组内.
(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?
一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率等于 1 2 .
(1)求口袋中有几个红球?
(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.
如图,四边形 ABCD是正方形,点 E是 BC的中点,∠ AEF=90°, EF交正方形外角的平分线 CF于 F.求证: AE= EF.
在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的 A、 B两个工厂间修一条笔直的公路,在工厂 A北偏东60°方向、工厂北偏西45°方向有一点 P,以 P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否有居民需要搬迁?(参考数据: 2 ≈ 1 . 4 , 3 ≈ 1 . 7 )
如图,在平面直角坐标系内,抛物线 y=﹣ x 2+ bx+ c与 x轴交于 A, B两点( A在 B的左侧),与 y轴交于点 C,且 A, B两点的横坐标分别是方程 x 2﹣2 x﹣3=0的两个实数根.
(1)求抛物线的解析式.
(2)若抛物线的顶点为 M,作点 M关于 x轴的对称点 N,顺次连接 A, M, B, N,在抛物线上存在点 D,使直线 CD将四边形 AMBN分成面积相等的两个四边形,求点 D的坐标.
(3)在抛物线上是否存在点 P,使△ PBC中 BC边上的高为 2 ?若存在,请直接写出满足条件的所有 P点的坐标;若不存在,请说明理由.