如图,已知抛物线y=x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BC∥x轴.(1)求抛物线的解析式;(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.
深圳大运会期间,某宾馆有若干间住房,住宿记录提供了如下信息:①7月20日全部住满,一天住宿费收入为3600元;②7月21日有10间房空着,一天住宿费收入为2800元;③该宾馆每间房每天收费标准相同。求该宾馆共有多少间住房,每间住房每天收费多少元?通过市场调查发现,每个住房每天的定价每增加10元,就会有一个房间空闲;己知该宾馆空闲房间每天每间费用10元,有游客居住房间每天每间再增加20元的其他费用,问房价定为多少元时,该宾馆一天的利润最大?
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE。写出图中两对相似三角形(不得添加辅助线);请分别说明两对三角形相似的理由。
已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图示)。当n=8时,共向外做出了 18个小等边三角形; 当n=k时,共向外做出了 3(k-2)个小等边三角形,这些小等边角形的面积和是 3(k-2)k2S(用含k的式子表示)。
如图,已知的顶点,,是坐标原点.将绕点按逆时针旋转90°得到.写出两点的坐标;求过三点的抛物线的解析式,并求此抛物线的顶点的坐标;在线段上是否存在点使得?若存在,请求出点的坐标;若不存在,请说明理由.
如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,求证:AB·AC=AE·AD.