如图,已知抛物线y=x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BC∥x轴.(1)求抛物线的解析式;(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.
解方程.
(本题10分)已知,如图,过点作平行于轴的直线,抛物线上的两点的横坐标分别为1和4,直线交轴于点,过点分别作直线的垂线,垂足分别为点、,连接.(1)求点的坐标;(2)求证:;(3)点是抛物线对称轴右侧图象上的一动点,过点作交轴于点,是否存在点使得与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
(本题9分) 如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).(1)求证:∠EAP=∠EPA;(2)□APCD是否为矩形?请说明理由;(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
(本题8分) 网上报道入春以来山东蔬菜严重滞销.为了减少菜农的损失,政府部门出台了相关补贴政策:采取每吨补贴0.02万元的办法补偿菜农. 下图是某菜农今年政府补助前、后蔬菜销售总收入y(万元)与销售量x(吨)的关系图.请结合图象解答以下问题:(1)在出台该项优惠政策前,蔬菜的售价为每吨多少万元?(2)出台该项优惠政策后,该菜农将剩余蔬菜按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求菜农共销售了多少吨蔬菜?(3)①求出台该项优惠政策后y与x的函数关系式; ②去年该菜农销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨蔬菜,总收入才能达到或超过去年水平.
(本题6分) 如图,内接于⊙O,点在半径的延长线上,. (1)试判断直线与⊙O的位置关系,并说明理由; (2)若⊙O的半径长为1,求由弧、线段和所围成的阴影部分面积(结果保留和根号).