现要设计一个如图所示的金属支架(图中实线所示),设计要求是:支架总高度AH为6米,底座BCDEF是以B为顶点,以CDEF为底面的正四棱锥,C,D,E,F在以半径为1米的圆上,支杆AB⊥底面CDEF.市场上,底座单价为每米10元,支杆AB单价为每米20元.设侧棱BC与底面所成的角为θ.(1)写出的取值范围;(2)当θ取何值时,支架总费用y(元)最少?
在中,、、分别是角、、的对边,,且符合.(Ⅰ)求的面积;(Ⅱ)若,求角.
已知二次函数和“伪二次函数” .(Ⅰ)证明:只要,无论取何值,函数在定义域内不可能总为增函数;(Ⅱ)在同一函数图像上任意取不同两点A(),B(),线段AB中点为C(),记直线AB的斜率为k.(1)对于二次函数,求证;(2)对于“伪二次函数” ,是否有(1)同样的性质?证明你的结论。
如图,已知F1、F2分别为椭圆C1:的上、下焦点,其中F1也是抛物线C2:的焦点,点A是曲线C1,C2在第二象限的交点,且(Ⅰ)求椭圆1的方程;(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:的直径,求的最大值和最小值.
目前,在我国部分省市出现了人感染H7N9禽流感病毒,为有效防控,2013年4月下旬,北京疫苗研制工作进入动物免疫原性试验阶段。假定现已研制出批号分别为1,2,3,4,5的五批疫苗,准备在A、B、C三种动物身上做试验,给每种动物做实验所选用的疫苗是从这五个批号中任选其中一个批号的疫苗.(Ⅰ)求给三种动物注射疫苗的批号互不相同的概率;(Ⅱ)记给A、B、C三种动物注射疫苗的批号最大数为,求的分布列和数学期望.
如图,在斜三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.(Ⅰ)求证:C1B⊥平面A1B1C1;(Ⅱ)求A1B与平面ABC所成角的正切值;(Ⅲ)若E为CC1中点,求二面角A—EB1—A1的正切值.