在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
(本题共3小题,满分16分。第1小题满分4分,第2小题满分6分,第3小题6分) 设数列的前项和为,若对任意的,有且成立. (1)求、的值; (2)求证:数列是等差数列,并写出其通项公式; (3)设数列的前项和为,令,若对一切正整数,总有,求的取值范围.
(本题共2小题,满分14分。第1小题满分6分,第2小题满分8分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为千米/小时;当车流密度不超过辆/千米时,车流速度为千米/小时,研究表明;当时,车流速度是车流密度的一次函数. (1)求函数的表达式; (2)当车流密度为多大时,车流量(单位时间内通过桥上某一点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
(本题共2小题,满分14分。第1小题满分7分,第2小题满分7分) 定义:,若已知函数(且)满足. (1)解不等式:; (2)若对于任意正实数恒成立,求实数的取值范围.
(本题共2小题,满分12分。第1小题满分6分,第2小题满分6分) 已知复数,(),且. (1)设=,求的最小正周期和单调递增区间. (2)当时,求函数的值域.
已知函数 ⑴试就实数的不同取值,写出该函数的单调递增区间; ⑵已知当时,函数在上单调递减,在上单调递增,求的值并写出函数的解析式; ⑶若函数在区间内有反函数,试求出实数的取值范围。