(本题8分)学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的部分记为负):
(1)上星期五借出图书________册.(2)上星期二比上星期五多借出图书________册。(3)上周平均每天借出图书多少册?(一周以5天计算)
已知,如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
如图,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCED为矩形.
如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF。
计算:
如图,已知反比例函数y=过点P, P点的坐标为(3-m,2m),m是分式方程的解,PA⊥x轴于点A,PB⊥y轴于点B.(1)试判断四边形PAOB的形状,并说明理由.(2)连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.(3)若M为反比例函数y=在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.