(本小题满分12分)设函数,(Ⅰ)求的最大值,并写出使取最大值时x的集合; (Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,,求的面积的最大值.
如图,在四棱锥中,平面,底面是菱形,,为与的交点, 为上任意一点.(Ⅰ)证明:平面平面;(Ⅱ)若平面,并且二面角的大小为,求的值.
已知函数的最大值为2.(1)求函数在上的单调递减区间;(2)△ABC中,,角A、B、C所对的边分别是a、b、c,且C=60,c=3,求△ABC的面积.
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记为取出的3个球中编号的最小值,求的分布列与数学期望.
设函数的最小值为a.(Ⅰ)求a;(Ⅱ)已知两个正数m,n满足,求的最小值.
以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数,),曲线的极坐标方程为. (Ⅰ)求曲线的直角坐标方程; (Ⅱ)设直线与曲线相交于、两点,当变化时,求的最小值.