如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.
如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.
已知:如图,AB、CD是⊙O的两条弦,AB=CD. 求证:∠OBA=∠ODC.
已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.
如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD. 求证:BE=DE.
如图,在⊙O中,与相等,OD⊥BC,OE⊥AC,垂足分别为D、E,且OD=OE,那么△ABC是什么三角形,为什么?