(本小题满分10分)选修4-1:几何证明选讲如图,是的⊙直径,与⊙相切于,为线段上一点,连接、, 分别交⊙于、两点,连接交于点.(Ⅰ)求证:、、、四点共圆.(Ⅱ)若为的三等分点且靠近,,,求线段的长.
已知数列为等差数列,数列为等比数列,若,且. (1)求数列,的通项公式; (2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点. (1)证明:平面; (2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1,,数列满足, (Ⅰ)求函数的单调区间; (Ⅱ)求证:0<<<1; (Ⅲ)若且<,则当n≥2时,求证:>
已知函数. (Ⅰ)求的单调区间和极值; (Ⅱ)当时,不等式恒成立,求的范围.