某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.(Ⅰ)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;(Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.
在中,分别为角的对边,的面积S满足 (Ⅰ)求角A的值; (Ⅱ)若,设角B的大小为x,用x表示c,并求c的取值范围.
已知函数f(x)=|x-2|,g(x)=-|x+3|+m. (1)解关于x的不等式f(x)+a-1>0(a∈R); (2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.
已知直线l经过点,倾斜角α=,圆C的极坐标方程为. (1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程; (2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积.
如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.
已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W. (1)求曲线W的方程,并讨论W的形状与的值的关系; (2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.