某校为了解2015年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“文艺类”所对应的圆心角α的度数;(2)该校2015年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?
已知关于x的方程x2+2(k﹣3)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若|x1+x2﹣9|=x1x2,求k的值.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ; (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ; (3)△A2B2C2的面积是 平方单位.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
(1)计算:2cos45°﹣(π+1)0(2)解方程:x(2x﹣5)=4x﹣10.
如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.