如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
如图①,直线与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E. (1)写出A、B、C三点的坐标,并求抛物线的解析式; (2) 当△BDE是等腰三角形时,直接写出此时点E的坐标; (3)连结PC、PB,△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由。
如图,⊙O的半径为5cm, AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求线段BC的长度.
某电器城购进一批单价为8元的节能灯管,如果按每支10元出售,那么每天可销售100支,经调查发现,这种节能灯管的售价每提高1元,其销售量相应减少5支,为了每天获得最大利润,该电器城应将这种灯管的售价定为每支多少元?每天获得的最大利润是多少?
如图,在△中,∠A=45°,,cm,求AB的长度
解方程: