已知椭圆的离心率为,且它的一个焦点的坐标为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.
解不等式|2x-4|<4-|x|.
解不等式:|x+3|-|2x-1|<+1.
求函数y=|x-4|+|x-6|的最小值.
解不等式:|2x-1|-|x-2|<0.