(本小题满分12分)已知向量,函数,若函数的图象的两个相邻对称中心的距离为.(Ⅰ)求函数的单调增区间;(Ⅱ)若将函数的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数的图象,当时,求函数的值域.
(本小题满分13分) 已知函数的图像与函数的图象相切,记 (Ⅰ)求实数b的值及函数F(x)的极值; (Ⅱ)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围.
(本小题满分12分) 如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N. (Ⅰ)求证:EM∥平面A1B1C1D1; (Ⅱ)求二面角B—A1N—B1的正切值.
(本小题满分12分) 有一块边长为6m的正方形钢板,将其四个角各截去一个边长为x的小正方形,然后焊接成一个无盖的蓄水池。 (Ⅰ)写出以x为自变量的容积V的函数解析式V(x),并求函数V(x)的定义域; (Ⅱ)指出函数V(x)的单调区间; (Ⅲ)蓄水池的底边为多少时,蓄水池的容积最大?最大容积是多少?
(本小题满分12分) 等差数列{}的前n项和记为Sn.已知(Ⅰ)求通项; (Ⅱ)若Sn=242,求n.
(本小题满分12分) 已知ΔABC中,的值。