如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
用数轴上的点表示﹣3.5,,,4,0,2.5,再用“<”把这些数连接起来.
计算: (1); (2).
(1)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.求证:AD=BE. (2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE边DE上的高,连接BE. ①求证:2CM+BE=AE; ②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.
如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E. (1)当∠BAD=20°时,∠EDC= °; (2)当DC等于多少时,△ABD≌△DCE,试说明理由; (3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.
如图,在笔直的公路上A、B两点相距25km,C.D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建—个汽车站E,使得C、D两村到汽车站E的距离相等,则汽车站E应建在离A点多远处?