(本小题满分14分)已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.(Ⅰ)求椭圆的方程;(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求证:直线、的斜率之和为定值.
(本题12分) 某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答. (Ⅰ)求某选手第二次抽到的不是科技类题目的概率; (Ⅱ)求某选手抽到体育类题目数的分布列和数学期望E.
(本题10分) 在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
(本小题满分7分)选修;不等式选讲 已知为正实数,且,求的最小值及取得最小值时的值.
(本小题满分7分)选修4-4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线l的极坐标方程为,圆的参数方程为(参数),求圆心到直线的距离.
(本小题满分7分)选修4-2:矩阵与变换 已知矩阵,其中R,若点P(1,1)在矩阵A的变换下得到点P′(0,-3),求矩阵A的特征值及特征向量.