(本小题满分14分)已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.(Ⅰ)求椭圆的方程;(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求证:直线、的斜率之和为定值.
如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (Ⅰ)求证:DM//平面APC;
(Ⅱ)求 证:平面ABC⊥平面APC;
(本小题满分12分)已知各项全不为零的数列的前项和为,且,其中. (I)求数列的通项公式; (II)对任意给定的正整数,数列满足 (),,求.
(本小题满分14分)已知椭圆的离心率为,短轴一个端点到右焦点的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.
(本小题满分12分)如图,在底面为直角梯形的四棱锥中,,平面.PA=4,AD=2,AB=,BC=6 (Ⅰ)求证:平面; (Ⅱ)求二面角D—PC—A的大小.
(本小题满分12分)设函数,其中向量,,,且的图象经过点. (Ⅰ)求实数的值; (Ⅱ)求函数的最小值及此时值的集合.