(本小题满分10分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为 (φ为参数,0≤φ≤π). (1)求C1的直角坐标方程; (2)当C1与C2有两个不同公共点时,求实数a的取值范围.
已知的解为条件,关于的不等式的解为条件.(Ⅰ)若是的充分不必要条件时,求实数的取值范围.(Ⅱ)若是的充分不必要条件时,求实数的取值范围.
如图所示,作斜率为的直线与抛物线相交于不同的两点B、C,点A(2,1)在直线的右上方.(Ⅰ)求证:△ABC的内心在直线x=2上;(Ⅱ)若,求△ABC内切圆的半径.
椭圆,椭圆的一个焦点坐标为,斜率为的直线与椭圆相交于两点,线段的中点的坐标为.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,点在椭圆上,且,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(Ⅰ)求曲线的直角坐标方程与直线的普通方程;(Ⅱ)设点,若直线与曲线交于,两点,且,求实数的值.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位已知直线 的参数方程为 (t为参数,),曲线C的极坐标方程为(Ⅰ)求曲线C的直角坐标方程。(Ⅱ)设直线 与曲线C相交于A,B两点,当变化时,求 的最小值