(本小题满分10分)选修4-4:极坐标与参数方程在直角坐标系中,曲线C1的参数方程为为参数),P为C1上的动点,Q为线段OP的中点.(Ⅰ)求点Q的轨迹C2的方程;(Ⅱ)在以O为极点,轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲上的动点,M为C2与轴的交点,求|MN|的最大值.
(本小题满分12分)已知关于的方程有两个不等的负根;关于的方程无实根。若为真,为假,求的取值范围
(本小题满分14分)已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,存在m,n∈N+使得am+1=bn成立,其中a,b均为正整数,且a1<b1<a2<b2<a3 ;(1)求数列{an},{bn}的通项公式;(2)设函数f(x)=bmx+bm-1x2+…+b1xm,f′(x)是函数f(x)的导函数;令Sm=f′(1),求Sm(用含n的代数式表示)
(本小题满分13分)如图M为的△ABC的中线AD的中点,过M的直线分别与边AB,AC交于点P,Q,设=x,=y,记y=f(x)(1)求函数y=f(x)的表达式;(2)设g(x)=x3+3a2x+2a,(x∈[0,1]),若对于任意x1∈[,1],总存在x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围;
(本小题满分12分)如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。(1)求直线A1C与平面A1AB所成角的正弦值;(2)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.
.(本小题满分12分)某化妆品生产企业为了占有更多的市场份额,已在2011年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件。已知2011年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用。若将每件化妆品的售价定为:其生产成本的1.5倍与“平均每件促销费的一半”之和,则当年生产的化妆品正好能销完。(1)将2011年的利润y(万元)表示为促销费t(万元)的函数(2)该企业2011年的促销费投入多少元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)