(1)实验与观察:(用“>”、“=”或“<”填空) 当x=﹣5时,代数式x2﹣2x+2 1; 当x=1时,代数式x2﹣2x+2 1; … (2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的; (3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.
夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题: (1)求甲、乙两种空调每台的进价; (2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式; (3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.
甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示. 请结合图象信息解答下列问题: (1)直接写出a的值,并求甲车的速度; (2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围; (3)乙车出发多少小时与甲车相距15千米?直接写出答案.
为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°. 请根据以上信息解答下列问题: (1)本次调查共收回多少张问卷? (2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度; (3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?
在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.
如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长. 注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.