(本小题满分16分)在数列中,,,前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列:当时,;当时,,记数列的前项和,试问:是否能取整数?若能,请求出的取值集合;若不能,请说明理由.
已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线的极坐标方程为,曲线C的参数方程是(是参数). (1)求直线的直角坐标方程及曲线C的普通方程; (2)求曲线C上的点到直线的最大距离.
如图,是的一条切线,切点为B,ADE,CFD和CGE都是的割线,. (1)证明:; (2)证明:
已知函数,其中. (1)当时,求曲线的点处的切线方程; (2)当时,若在区间上的最小值为-2,求的取值范围; (3)若,且恒成立,求的取值范围.
已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有,当点的横坐标为3时,为正三角形. (1)求C的方程; (2)若直线,且和C有且只有一个公共点E. ①证明直线AE过定点,并求出定点坐标; ②的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
如图,四棱锥中,底面为矩形,平面,为的中点. (1)证明:平面; (2)设二面角为60°,,求三棱锥的体积.