(本小题满分12分)某体育赛事组委会为确保观众顺利进场,决定在体育场外临时围建一个矩形观众候场区,总面积为(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为的入口.现已知铁栏杆的租用费用为100元.设该矩形区域的长为(单位:),租用铁栏杆的总费用为(单位:元)(Ⅰ)将表示为的函数;(Ⅱ)试确定,使得租用此区域所用铁栏杆所需费用最小,并求出最小费用.
(本小题满分15分) 设函数(Ⅰ)求函数的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;(Ⅲ)证明:
(本小题满分15分)已知函数(其中) ,点从左到右依次是函数图象上三点,且.(Ⅰ) 证明: 函数在上是减函数;(Ⅱ) 求证:⊿是钝角三角形;(Ⅲ) 试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.
(本小题共14分)已知函数。(1)若为方程的两个实根,并且A,B为锐角,求m的取值范围;(2)对任意实数,恒有,证明:.
已知函数(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值。
(本小题满分12分)设函数.(1)判断函数的奇偶性,并写出时的单调增区间;(2)若方程有解,求实数的取值范围.