如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.
如图,在Rt△ABC中,∠C=90°,AC=8㎝,BC=6㎝,M为AC上一点且AM=BC,过A点作射线AN⊥CA,A为垂足,若一动点P从A出发,沿AN运动,P点运动的速度为2㎝/秒. (1)经过几秒△ABC与△PMA全等; (2)在(1)的条件下,AB与PM有何位置关系,并加以说明. (3)在(1)的条件下,设PM与AB的交点为D,若AD的长为4.8㎝,求AB的长.
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.
画图:试画出下列正多边形的所有对称轴,并完成表格, 根据上表,猜想正n边形有_________条对称轴。
如图,点D、B分别在∠A的两边上,C是∠A内一点,AB = AD,BC = CD,CE⊥AD于E,CF⊥AF于F.求证:CE = CF