已知,为圆:与轴的交点(A在B上),过点的直线交圆于两点.(1)若弦的长等于,求直线的方程;(2)若都不与,重合时,是否存在定直线,使得直线与的交点恒在直线上.若存在,求出直线的方程;若不存在,说明理由.
(本小题满分10分). (1)解不等式; (2)若不等式的解集为,设求实数的取值范围.
(本小题满分12分)已知函数. (1)若函数,求函数的单调区间; (2)设直线为函数的图像上点处的切线,证明:在区间上存在唯一,直线与曲线相切.
(本小题满分12分)若函数的图象与直线为常数)相切,并且切点的横坐标依次成等差数列,且公差为. (1)求的值; (2)若点是图象的对称中心,且,求点A的坐标.
(本小题满分12分)已知函数. (1)求的单调区间; (2)设,若在上不单调且仅在处取得最大值,求的取值范围.
(本小题满分12分)已知函数. (1)求函数的最小正周期和单调递增区间; (2)若在中,角,,的对边分别为,,,,为锐角,且,求面积的最大值.