如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.41,≈1.73.
甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示. 请结合图象信息解答下列问题: (1)直接写出a的值,并求甲车的速度; (2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围; (3)乙车出发多少小时与甲车相距15千米?直接写出答案.
为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°. 请根据以上信息解答下列问题: (1)本次调查共收回多少张问卷? (2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度; (3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?
在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.
如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长. 注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
先化简:(x﹣)÷,其中的x选一个适当的数代入求值.