如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数()的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k= ;(2)连接CA,DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.
解不等式组:,并把它的解集在数轴上表示出来.
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为 ;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为 .(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为 ;② 线段AD,BE之间的数量关系为 ;(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
已知二次函数y=(t-4)x2-(2t-5)x+4在x=0与x=5的函数值相等.(1)求二次函数的解析式;(2)若二次函数的图象与x轴交于A,B两点(A在B左侧),与y轴交于点C,一次函数y=kx+b经过B,C两点,求一次函数的表达式;(3)在(2)的条件下,过动点D(0,m) 作直线//x轴,其中.将二次函数图象在直线下方的部分沿直线向上翻折,其余部分保持不变,得到一个新图象M.若直线与新图象M恰有两个公共点,请求出的取值范围.
已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等.(在题目的原图中用尺规完成作图, 并且保留作图痕迹)结论: