郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:
(1)这次统计共抽取了 本书籍,扇形统计图中的m= ,∠α的度数是 ;(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.
如图所示,梯形 ABCD 中, AB / / DC , ∠ B = 90 ° , AD = 15 , AB = 16 , BC = 12 ,点 E 是边 AB 上的动点,点 F 是射线 CD 上一点,射线 ED 和射线 AF 交于点 G ,且 ∠ AGE = ∠ DAB .
(1)求线段 CD 的长;
(2)如果 ΔAEG 是以 EG 为腰的等腰三角形,求线段 AE 的长;
(3)如果点 F 在边 CD 上(不与点 C 、 D 重合),设 AE = x , DF = y ,求 y 关于 x 的函数解析式,并写出 x 的取值范围.
如图,抛物线 y = a x 2 + bx - 5 ( a ≠ 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D .
(1)求这条抛物线的表达式;
(2)联结 AB 、 BC 、 CD 、 DA ,求四边形 ABCD 的面积;
(3)如果点 E 在 y 轴的正半轴上,且 ∠ BEO = ∠ ABC ,求点 E 的坐标.
已知:如图, ⊙ O 是 ΔABC 的外接圆, AB ̂ = AC ̂ ,点 D 在边 BC 上, AE / / BC , AE = BD .
(1)求证: AD = CE ;
(2)如果点 G 在线段 DC 上(不与点 D 重合),且 AG = AD ,求证:四边形 AGCE 是平行四边形.
某物流公司引进 A 、 B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时, A 种机器人于某日0时开始搬运,过了1小时, B 种机器人也开始搬运,如图,线段 OG 表示 A 种机器人的搬运量 y A (千克)与时间 x (时 ) 的函数图象,线段 EF 表示 B 种机器人的搬运量 y B (千克)与时间 x (时 ) 的函数图象.根据图象提供的信息,解答下列问题:
(1)求 y B 关于 x 的函数解析式;
(2)如果 A 、 B 两种机器人连续搬运5个小时,那么 B 种机器人比 A 种机器人多搬运了多少千克?
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = BC = 3 ,点 D 在边 AC 上,且 AD = 2 CD , DE ⊥ AB ,垂足为点 E ,联结 CE ,求:
(1)线段 BE 的长;
(2) ∠ ECB 的余切值.