某商场在今年“十一”黄金周期间采取购物抽奖的方式促销(每人至多抽奖一次),设了金奖和银奖,奖券共2000张。在某一时段对30名顾客进行调查,其中有的顾客没有得奖,而得奖的顾客中有的顾客得银奖,若对这30名顾客随机采访3名顾客。(1)求选取的3名顾客中至少有一人得金奖的概率;(2)求选取的3名顾客中得金奖人数不多于得银奖人数的概率。
为了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如上图),图中从左到右各小长方形面积之比为2: 4: 17: 15: 9: 3,第二小组的频数为12. (Ⅰ)第二小组的频率是多少?样本容量是多少? (Ⅱ)若次数在110以上(含110次)为达标,试估计学校全体高一学生的达标率是多少?
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人). (Ⅰ)求x,y; (Ⅱ)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C概率.
化简:(其中为第三象限角).
已知,,求的值.
设函数 (Ⅰ)当时,求的最大值; (Ⅱ)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (Ⅲ)当,,方程有唯一实数解,求正数的值.