如图,直角三角形ABC的顶点坐标A()、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.
(本小题满分13分)已知向量a = ,b =, 且存在实数,使向量m = ab, n = ab, 且m⊥n. (Ⅰ)求函数的关系式,并求其单调区间和极值; (Ⅱ)是否存在正数M,使得对任意,都有成立?若存在求出M;若不存在,说明理由.
(本小题满分12分)在中,(Ⅰ)求AB的值; (Ⅱ)求的值。
(本小题满分12分)在△ABC中,角A、B、C所对的边分别是a、b、c,若,且,求△ABC的面积
(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;(Ⅱ)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
(本小题满分12分)设向量,向量,.(1)若向量,求的值;(2)求的最大值及此时的值.